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Abstract 

 

The present study describes a project that has developed a geophysically 
based data set on economic activity. The project is called the Yale G-Econ 
project (for Geographically based Economic data). The G-Econ data set 
calculates gross value added at a 1-degree longitude by 1-degree latitude 
resolution at a global scale for all terrestrial cells. These data allow better 
integration of economic and environmental data to investigate environmental 
economics, the impact of global warming, and the role of geophysical factors in 
economic activity. On of the major results is to show that the true economic 
deserts of the globe are in Greenland, Antarctica, northern Canada, Alaska, 
and Siberia. 
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I. Introduction 

 

 The last two decades have witnessed a dramatic growth in interest, at both 

national and international levels, in geography and geophysical data. A major hurdle 

for current research is the complete disjunction of socioeconomic and geophysical 

analyses. In part, the lack of intersection of the research programs has been due to the 

disparate interests and descriptions of the different disciplines working in these two 

areas.  

 

 One group of studies has been largely undertaken by economists and other 

social scientists concerned with “wealth of nations,” comparative growth rates, and 

national economic policies. These analyses have naturally relied upon socioeconomic 

data constructed from accounts largely free of any geophysical dimension and sorted 

by political boundaries. Economic studies of the relationship between economic 

activity and geography have generally relied upon data that are organized by political 

jurisdictions (countries, states, counties, and the like). Most recent analysis has 

debated the relative importance of geography, institutions, and leadership in 

determining income patterns.3  

 

 
 3 For example, see R.E. Hall and C. I. Jones Hall (1999) “Why Do Some Countries 
Produce So Much More Output Per Worker Than Others?” Quarterly Journal Economics, 114 , 
1, pp. 83-116.; J. D. Sachs, A. Mellinger, and J. Gallup (2000), “Climate, Coastal Proximity, 
and Development,” in Gordon L. Clark, G.L., Feldman, M. P., and Gertler, M. S., eds., Oxford 
Handbook of Economic Geography (Oxford University Press, Oxford, UK;  D. Acemoglu, S. 
Johnson, and J. A. Robinson, J. A (2001) “The Colonial Origins of Comparative Development: 
An Empirical Investigation,” American Economic Review, 91, pp. 1369-1401. 
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 The other group of studies, largely undertaken by natural scientists, has 

concentrated on understanding geophysical processes. These have increasingly relied 

upon terrestrial or satellite observation of a variety of geophysical phenomena such as 

weather or climate, ecological features, soils, glaciology, and so forth. The units of 

analysis in these geophysical studies are generally physical, or “gridded” by latitude 

or longitude. Prominent examples of such geophysically-based studies are ones that 

project the climatic consequences of the accumulation of radiatively active 

atmospheric gases. 4 There have been several attempts to link geophysical studies with 

socioeconomic studies. Perhaps the most intensive have been the “integrated 

assessment” models developed in the climate-change community.5 These analyses 

have invariably linked the geophysical and socioeconomic modules by rescaling the 

geophysical variables (such as climate and ecological impacts) into political 

boundaries.  

 

 There have been few attempts to rescale from political to geophysical scaling. 

This gap has occurred partly because the major impacts being examined were 

economic ones along with national economic or energy policies. Even more important, 

however, has been the complete lack of an integrated socioeconomic database scaled 

on a geophysical level. To put it simply, it would be impossible to conduct an 

 
 4 There is a vast literature on the impact of industrial activity on climate. A systematic 
review is contained in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. 
Dai, K. Maskell, and C.A. Johnson (2001), eds., Climate Change 2001: The Scientific Basis, 
Cambridge University Press, Cambridge, UK. 
 

 5 See W. D. Nordhaus, and J. Boyer (2000), Warming the World: Economic Modeling of 
Global Warming, MIT Press, Cambridge, MA. A review of existing integrated assessment 
models is contained in Bruce, J.P., Lee, H., and Haites, E.F., eds. (1995) Climate Change 1995: 
Economic and Social Dimensions of Climate Change, Cambridge University Press, UK, chapter 
10.  
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economic analysis on a geophysical basis today because the underlying data do not 

currently exist. 

 

 The present study describes the results of a project to develop a 

geophysically based data set on economic activity. The project is called the Yale 

G-Econ project (for Geographically based Economic data). The G-Econ data 

presented here estimate gross output at a 1-degree longitude by 1-degree latitude 

resolution at a global scale. This includes virtually all terrestrial regions. The 

resolution is approximately 100 km by 100 km, which is approximately the size of 

most third-level political entities (e.g., counties in the United States). The effort is 

limited to producing data on value added (conceptually similar to gross domestic 

product) for 1990. In the course of the study, we have also developed or relied 

upon data on population, land area, some estimates of minerals production, and 

“RIG” or area of a region or country within each grid cell. For all countries, we 

have developed output measures converted into common metrics using both 

market exchange rates and purchasing power parity (PPP) exchange rates. For 

some countries, we develop more detailed data (for example, we have developed 

data by grid cell and major industry for decades from 1950 to 2000 for the United 

States), but these data are not yet available for general use. 

 

 There are several advantages of the G-Econ data set for studies in economic 

geography and environmental economics. One important advantage is that it can 

easily link economic data to readily available geophysical data (such as on 

climate, soils, ecology, and the like). A second advantage is that the database for 

studying global processes is much more detailed than the standard ones. By 

disaggregating to grid cells, the number of useful observations increases from 

around 100 countries to over 27,000 terrestrial cells. Additionally, because the 
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data set has multiple observations per country, it is possible to control for factors 

that are unique to individual countries. 

 

 In addition to the level of aggregation, the G-Econ data set emphasizes 

certain features that are unavailable in conventional approaches. First, the data 

are primarily concerned with the geographical intensity of economic activity rather 

than the personal intensity of economic activity. In other words, the data focus on 

the intensity of economic activity per unit area rather than per capita or per hour 

worked. This approach places the emphasis clearly on geography rather than 

demography. Second, by emphasizing gridded data rather than national data, 

this data set allows a much richer set of geophysical data to be used in the 

analysis. Most of the important geographical data (climate, location, distance 

from markets or seacoasts, soils, and so forth) are generally collated on a 

geophysical basis rather than based on political boundaries. There is also an 

important interaction between the finer resolution of the economic data and the 

use of geophysical data because, for many countries, averages of many variables 

(such as temperature or distance from seacoast) cover such a huge area that they 

are virtually meaningless, whereas for most grid cells the averages cover a 

reasonably small area. 
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II. Methodology for Estimating Gross Cell Product 

 

Gross Cell Product   

 

 The major statistical contribution of the present research program has been 

the development of “gridded output” data, which are called gross cell product or 

GCP. The conceptual basis of GCP is the same as gross domestic product (GDP) as 

developed in the national income and product accounts of major countries. These 

procedures have been harmonized internationally in the System of National 

Accounts, or SNA.6 The basic measure of output is gross value added in a specific 

geographical region; gross value added is defined as total production of market 

goods and services less purchases from other businesses. Under the principles of 

double-entry bookkeeping, GCP also equals the incomes of factors of production 

located within the region. Under the principles of national economic accounting, 

GCP will aggregate up across all cells within a country to gross domestic product. 

 

Because the quality of economic data varies widely across countries, the 

methodologies for developing GCP also differ by country. The general 

methodology for calculating GCP is the following: 

 

                                                 
 6 The SNA, or System of National Accounts, developed under the aegis of the 
United Nations and other international agencies, is a set of concepts, definitions, 
classifications, and accounting rules. The latest SNA is from 1993 and can be found at  
Commission of the European Communities, International Monetary Fund, Organization 
for Economic Cooperation and Development (1993), System of National Accounts, (United 
Nations, and World Bank, Brussels and elsewhere) also at 
http://esa.un.org/unsd/sna1993/introduction.asp. 
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    (1)  GCP by grid cell = (population by grid cell) x (GCP/population) by grid cell 

 

 

The approach in (1) is particularly attractive because demographers and 

quantitative geographers have recently constructed a detailed set of population by 

grid cell, the first term on the right-hand side of (1).7 The effort in this study 

generally estimates GCP by using population and developing estimates of the 

second term of (1), per capita output by grid cell. 

 

From a statistical point of view, using the approach shown in equation (1) is 

useful because the distribution of population across regions generally has much 

higher variability that the distribution of per capita GCP. Table 1 shows statistics 

on the distribution of normalized estimated GCP, population, and per capita GCP 

from detailed county data for the United States. (“Normalized” variables are 

divided by their mean, so the standard deviation is the coefficient of variation. The 

total sample is larger than the common sample because some cells have estimated 

population of zero.) As can be seen, the coefficient of variation of per capita GDP is 

between one-eighth and one-tenth of that of GCP or population. The ratio of 

dispersions is even greater for Canada, where the estimated coefficient of variation 

of GCP and population is around 17 times than of per capita GCP. 

 
7 A full description of the GPW project (gridded population of the world) is contained at 
http://www.ciesin.org/datasets/gpw/globldem.doc.html. Also see the description in a 
later footnote. 

http://www.ciesin.org/datasets/gpw/globldem.doc.html


 

        Common sample                       Total sample

GCP Population

Per 
capita 
GCP GCP Population

Per 
capita 
GCP

 Maximum 55.10 45.56 1.74 64.03 52.95 1.74
 Minimum 0.00 0.00 0.58 0.00 0.00 0.58
 Std. Dev. 3.07 2.76 0.38 3.33 3.00 0.38
 Skewness 8.77 7.53 1.15 10.91 9.36 1.15
 Kurtosis 115.33 87.07 2.71 153.35 115.39 2.71
 Observations 1178 1178 1178 1369 1369 1178  

 

Table 1. Statistics for United States for the normalized value of gross cell 

product, population, and per capita GCP (The normalized value is the ratio of the 

value to its mean value, so the standard deviation, “Std. Dev.,” is the coefficient of 

variation.) 

 

 

Methodologies for estimating per capita gross cell product

 

The detail and accuracy of economic and demographic data vary widely 

across countries, and we have developed different methodologies depending upon 

the data availability and quality. The details, methodologies, and underlying data 

are all available for each country on the project website at http://gecon.yale.edu/.  

 

In developing the data and methods for the project, two different attributes 

are important: the level of spatial disaggregation and the underlying data used to 

construct the estimates of gross cell output.  

 

 
 8 

http://gecon.yale.edu/
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Spatial disaggregation 

 

In terms of spatial disaggregation, there are usually three levels of data which 

can be drawn upon: 

 

A. National data 

B. “State data”: the first political subdivision  

C. “County data”: the second political subdivision 

 

Source of estimates of economic data 

 

To develop gross cell output, we generally rely upon the following data sets 

 

1. Regional gross product (such as gross state product for the United 

States and gross county product for China). These are regional estimates of 

gross product developed by national statistical agencies. 

2. Regional income by industry (such as labor income by industry and 

counties for the United States and Canada). These are estimates of various 

economic data by region developed by national statistical agencies. 

3. Regional employment by industry (such as detailed employment by 

industry and region for Egypt). These are estimates of different demographic 

and labor-force data developed by national statistical agencies. 

4. Regional urban and rural population or employment along with 

sectoral data on agricultural and non-agricultural incomes (used for African 

countries such as Niger). These are estimates of different demographic and 

labor-force data developed by national statistical agencies, but generally do 

not include any extensive regional industrial detail. 
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In some cases, we have combined data at different levels.  

 

It is difficult to determine the precise level of reliability of the data because 

agencies do not provide estimates of the reliability of their national accounts and 

seldom include reliability estimates of demographic data. In general, the data for 

high-income countries are the most reliable, while those for low-income countries 

are the least reliable. For a few countries, we have alternative methodologies. For 

example, for China we have estimates of county gross product and provincial 

gross product. Using the finer detail gives quite different estimates of GCP with 

the ratio varying by a factor of more than two across different cells. By contrast, the 

differences in estimates of GCP between using state data and county data for the 

United States are relatively small. 

 

Specific Methodologies 

 

Some examples illustrate the variety of methodologies.  

 

$ For the United States, government estimates are available for gross state 

product for 51 second-level entities. We use detailed data on labor income by 

industry for 3100 counties to develop estimates of gross county product. We then 

apply spatial rescaling to convert the county data to the 1380 terrestrial grid cells 

for the United States. This approach is therefore C.1 using the classification system 

above. We would judge these estimates to be highly reliable. A similar approach 

was used for Canada, Australia, and Brazil. 

 

$ For countries of the European Union, we rely on Eurostat estimates of 

regional gross value added for second level political subdivisions. We then use 

data on population density to convert regional data to the 1344 terrestrial grid 
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cells. This approach is therefore C.1. We would judge these estimates to be of high 

quality and similar in construction to the estimates developed for the United 

States. 

 

$ For most other high-income countries, we have employed gross regional 

product by primary subdivision (“provinces” for Argentina or “oblasts” for the 

Russian Federation). This approach is therefore B.1. For small or medium sized 

countries (Argentina), this approach will be relatively reliable, while for large 

countries (Russia) the regions are too large to provide accurate estimates for many 

regions. 

 

$ For many middle-income countries, such as Egypt, we have data from 

recent censuses, which collect data on employment by region and industry. We 

then use these data along with national accounts data on national output by 

industry to estimate output by region and industry and then aggregate these data 

across industries to obtain estimates of gross regional product. This technique is 

therefore B.3. 

 

$ The Chinese statistical agency has developed estimates of gross county 

product for approximately 3000 counties. These data are not consistent with the 

gross output data by province or for the country, and the process by which they 

are produced is mysterious. We have scaled the county and provincial data to 

conform to the national estimates of gross domestic product. This approach is 

therefore C.1. Because of the inconsistency of the data and the lack of explanation 

of the derivation of the county data, we judge the reliability of these data to be only 

moderate. 
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$ For Nigeria and many of the lowest-income countries, particularly those in 

Africa, we have no regional economic data at all. We use population census data to 

estimate rural and urban populations by county. We further use national 

employment and output data to estimate output per capita in agriculture and non-

agricultural industries. Combining these, we then can estimate output per capita 

by region. This technique is therefore C.4. Because the resolution of the economic 

data is so poor, we judge these estimates to be relatively unreliable. 

 

$ For countries where natural-resource production is a significant fraction of 

total output (generally taken to be more than 10 percent of GDP), we have 

developed independent data on production for petroleum or other mining 

activities by grid cell; from these we can obtain relatively accurate estimates of 

gross value of mining production, which can also be matched with the national-

accounts data on mining value added. We then estimate non-mining output using 

one of the other techniques. For most Middle-east oil-exporting countries, the oil 

sector is C.1, while the balance of the economy is estimated using B.4 or B.3. 

 

$ For Greenland, we took the population by grid cell and multiplied that by 

average gross product of Greenland. This technique is therefore B.1. Because the 

underlying data are relatively good, we estimate this to be relatively reliable. 

 

$ Antarctica is an interesting case. Most economic studies carry Antarctica on 

the books as having GDP of $0. In fact, several small research efforts are 

undertaken there, and we estimated product by estimating the resident population 

as well as the levels of research performance. The estimated total output of the 

continent is thereby estimated to be $0.47 billion in 1990. The output density of 

Antarctica is approximately 1/3,000,000th that of Hong Kong. 
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$ We have developed disaggregated estimates for per capita output 

according to the methods described in the preceding summaries for all “large 

countries.” A large country is defined as one with at least 50 grid cells. (For 

example, Zimbabwe is a “large country” with 52 grid cells, whereas Belarus is a 

“small country” with 44 cells.) For most “small countries,” representing 1577 grid 

cells and 97 countries or entities, we have estimated GDP using a simpler 

technique of assuming that per capita GDP is constant across different grid cells. 

The distribution of GCP within these countries is therefore determined by 

population distribution. For these countries, the regional variation of GCP is likely 

to be informative, but the distribution of per capita output is not. We took this 

simpler approach to complete the data set for terrestrial observations. Note, 

however, that small countries constitute only 6.2 percent of the sample. 

 

A general point about the quality of the data should be emphasized. For many 

low-income countries, as well as countries experiencing war or revolution, data on 

gross output are not available by states or counties, and even population data are 

of poor quality. While methodologies have been developed to estimate regional 

product, we suspect that the data are unable to resolve the major differences in per 

capita output by region. Most of the difficulties arise because of the absence or 

poor quality of economic data at the regional level.  

 

We can illustrate this problem by examining the dispersion of per capita GCP 

across different countries. For example, the standard deviation across grid cells of 

the logarithm of per capita GCP in the United States is 0.494, while that of Chad in 

0.143. In other words, the variability in the United States is more than three times 

that of Chad. Although personal income inequality is estimated to be somewhat 

higher in the United States than that in Chad, it seems likely that most of the 

discrepancy between these two numbers is due to the lack of detailed regional 
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economic data. There is no remedy for this other than better data. On the other 

hand, as noted above, a substantial fraction of the variation in GCP arises in 

variation in population density rather than in per capita GCP. Therefore, 

particularly for countries with poor economic statistics, the estimates will be 

relatively reliable as long as the population estimates are accurate.   

 

Spatial rescaling

 

The data on output and per capita output are estimated by political 

boundaries. To create gridded data, we need to transform the data to geophysical 

boundaries, a process called “spatial rescaling.”8 In the field of quantitative 

geography, the techniques involved in spatial rescaling data are known as 

“cross-area aggregation” or as “areal interpolation.” Spatial rescaling arises in a 

number of different contexts, such as when data from census tracts are aggregated 

into legislative districts. 9   

 

We can picture the procedure graphically using Figure 1. The figure shows 

three irregular regions (counties A, B, and C) as well as 25 grid cells. We begin 

with demographic and economic data (population, income, output, and the like) 

for each of the counties and need to convert it to data for the grid cells. If we 

                                                 
 8 See A. Stewart Fotheringham, Chris Brunsdon, and Marton Charlton (2000), 
Quantitative Geography, Sage, London, pp. 59-60. 
 

 9 See Robin Flowerdew and Mick Green (1989), “Statistical Methods for Inference 
Between Incompatible Zonal Systems,” in Michael Goodchild and Sucharita Gopal, eds., 
The Accuracy of Spatial Databases, Taylor and Francis, London, 239-247. Also see P. F. 
Fisher and M. Langford (1995), “Modelling the errors in areal interpolation between zonal 
systems by Monte Carlo simulation,” Environment and Planning A, vol. 27, pp. 211-224. 



consider county A, 1 grid cell lies entirely in the county, while parts of 10 others lie 

partially within the county. 
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County 

County A 

County 

 

Figure 1. Example of rescaling from political boundaries to grid cells 

This shows a typical example in which data need to be converted from counties 

(here three irregularly shaped regions) to twenty-five grid cells. 

______________________________________________________ 

  

 For our purposes, we call this problem “spatial rescaling” to indicate that it 

is generally not aggregation but requires inferring the distribution of the data in 

one set of spatial aggregates on the basis of the distribution in another set of spatial 

aggregates, where neither is a subset of the other. The scaling problem arises in 

this context because all economic data are collected and presented using political 

boundaries and we wish to transform these to geophysical boundaries. In general, 

we are using data at the subnational level (corresponding to states and counties for 

the United States) and converting these to gridded data. 



 16

                                                

 

 In a background simulation study, we investigated a number of alternative 

approaches to spatial rescaling using actual disaggregated economic, 

demographic, climate, and random variables for the United States.10 We 

investigated seven techniques: (1) weighted average or proportional allocation, (2) 

median allocation or plurality rule, (3) local kernel regression (six alternatives), (4) 

global kernel regression (three alternatives), (5) weighted non-linear regression, (6) 

country average, and (7) pycnophylactic smoothing.11

 

  Having reviewed alternative approaches and done some simulations 

with economic data, we settled on the proportional allocation rule. We describe the 

technique briefly here and provide a more detailed description with an example in 

the appendix. The first step is to divide each grid cell into “sub-grid cells.” Each 

sub-grid cell belongs uniquely to the smallest available political administrative 

unit (call them “counties”). For example, in Figure 1, the cross-hatched area is a 

sub-grid cell that belongs to county A. We allocate the population of the county 

among the different sub-grid cells to which it belongs assuming that the 

population density in each county is uniform. We then rescale the population in 

each grid cell to conform to the GPW estimate of the population of the grid cell. 

 

 The next step is to collect or estimate per capita output for each county. We 

assume that per capita output is uniformly distributed in each county. We then 

 
 10 William D. Nordhaus, “Alternative Approaches to Spatial Rescaling” (2002), 
Yale University, February 28, Version 2.2.2. The GPW gridded population estimates used 
technique (2) in the original version and moved to technique (1) in the latest version. 
 
 11 W.A. Tobler, “Smooth Pycnophylactic Interpolation for Geographical Regions” 
(1979), Journal of the American Statistical Association, pp. 519-529.     



 17

calculate a tentative estimate of output for each sub-grid cell as the product of the 

sub-grid cell area times the population density of the county times the per capita 

output of the county. We next calculate the tentative gross cell product as the sum 

of the outputs of each sub-grid cell. The final step is to rescale the gross cell 

products to conform to the totals for the country. For the current version of G-

Econ, we have generally used national totals for population and PPP GDP from the 

World Bank as control totals. 

 

 This approach is data-intensive and computationally burdensome because it 

requires detailed maps for each grid cell showing the RIGs of each sub-grid cell 

along with the county to which it belongs. We further need to estimate the 

economic data for each of the counties. For example, to use proportional allocation 

in Figure 1, it would be necessary to apportion the county A among the 11 sub-grid 

cells into which it falls and to estimate per capita output for each county. 

 

 The Appendix to this paper shows a specific example of how the technique 

is applied to a grid cell in India. 

 

  The analysis in the background paper applied the different techniques to 

actual data for the United States. It concluded that the weighted average technique 

(proportional allocation) is the most robust technique and generally gives the most 

accurate estimate of the true values. Other “local” techniques, such as kernel 

regressions, also performed well. Global techniques, such as country averaging or 

weighted regressions, had significantly higher errors. Finally, there were seen to be 

significant gains in accuracy from disaggregating. For the U.S., as an example, we 

estimate that disaggregating from the national average to counties would decrease 

the root mean squared error of the cell average by a factor of around 5. 
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III. Other Variables 

 

 Two other variables are central to the calculations of gross cell product: cell 

population and cell area.  

 

 Population by Grid Cell 

 

 The population estimates for grid cell have been developed by the GPW 

project (versions 1 through 3).12 This project has developed global population 

estimates by grid cell for different spatial resolutions; for this project, we use the 

1990 population estimates aggregated to 1-degree longitude by 1-degree latitude.  

 

 Because these data are central to our methodology, we describe briefly the 

methodology by which the population data are constructed.13 The project collected 

both administrative boundary data (e.g., boundaries of states) and population 

estimates associated with those administrative units. The resolution of the data can 

be measured by the average number of administrative units per grid cell. This 

                                                 
 12 W. Tobler, U. Deichman, J. Gottsegen, and K. Malloy (1995), The Global 
Demography Project Technical Report 1995-6, National Center for Geographic Information 
and Analysis, Santa Barbara, CA, 1995. Center for International Earth Science Information 
Network (CIESIN), Columbia University; International Food Policy Research Institute 
(IFPRI); and World Resources Institute (WRI), Gridded Population of the World (GPW), 
Version 2 (CIESIN, Columbia University Palisades, NY), available at  
http://sedac.ciesin.columbia.edu/plue/gpw. 
 
 13 The methodology is described in Uwe Deichmann, Deborah Balk, and Greg 
Yetman (2001), “Transforming Population Data for Interdisciplinary Usages: From 
Census to Grid,” October 1, available at 
http://sedac.ciesin.columbia.edu/plue/gpw/index.html?grl.html&2 . 

http://sedac.ciesin.columbia.edu/plue/gpw
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ranged from over 200 for Portugal and Switzerland to under 0.1 for Mongolia, 

Saudi Arabia, and Greenland. Since most countries with low resolution are ones 

with large unpopulated areas and little economic activity, the population 

resolution appears satisfactory for most countries. 

 

 The quality of the population data varies widely and depends upon the 

timeliness of the census estimates, the number of census estimates, and the quality 

of the census. The data are usually best for high-income countries, while many of 

the low-income countries, particularly those with unstable political conditions, 

have relatively unreliable estimates. These problems are paralleled by the 

inadequacies of the economic data, which we discussed above. 

 

 Grid cell area 

 

 The final data requirements for constructing estimates are the maps for grid 

cells and administrative boundaries. We have generally taken these from a variety 

of non-commercial sources in the open literature. From a statistical point of view, 

the most important data are the “RIG,” or “rate in grid” data. These estimate the 

fraction of a grid cell that is within a country; and further estimate the fraction of 

each grid cell that lies within each sub-grid cell. For example, in Figure 1, we need 

to estimate the fraction of the grid cell that is taken up by the cross-hatched sub-

grid cell.  

 

Our decision to take the base year 1990 as our data point for the output 

estimates had the unfortunate result that this was a year in which several major 

national boundaries changed in the wake of the breakup of the Soviet Union. For 

our purposes, we selected national boundaries as of 2000 rather than 1990, 

although this does not affect the economic data by grid point. 
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 There were four different sources for constructing the RIGs: UN data, data 

from the GPW project, estimates from ArcView, and manual estimates from 

detailed national maps. Of the 27,500 grid cells we have examined, approximately 

1400 had discrepancies of more than 10 percent. These usually involved an obvious 

mistake of one of the first three techniques (such as including a body of water). For 

the balance, we inspected the grid cell and resolved the difference based on 

detailed national maps. In principle, grid cells in this study exclude major bodies 

of water, but smaller ones, including puddles, are inevitably included. 

Additionally, we have generally excluded off-shore oil production from the data 

set for grid cells that lie completely offshore (since these generally have 0 percent 

RIG), even though for several countries we have estimated production from this 

source. 

 

IV. Summary Statistics 

 

 The research described here is ongoing, and methodologies for individual 

countries will be improved in the near future. It will be useful to provide a 

summary of the status of the data. Table 2 shows estimates for GEcon 1.3, which 

was completed in May 2006. This table shows the number of grid cells, population, 

output, land area, and number of countries or regions that have been completed.  

 

The GEcon 1.3 database contains economic data on 190 completed countries 

and regions, which comprise virtually all GDP, population, and terrestrial land 

area. The only regions that are excluded are a few postage-stamp countries like 

Mayotte and Liechtenstein. 

 

 



Grid cells

Population 
(millions, 

1990)

GDP (PPP, 
billions of 
1995 US$), 

1990

Land Area 
(millions 
sq. km.)

Number of 
countries or

regions
Totals
   Completed 27,490           5,230                30,216              151.540        190
   All regions 27,554           5,231                30,219              151.550        208

Percentage
   Completed 99.768% 99.987% 99.989% 99.996% 91.346%
   All regions 100.000% 100.000% 100.000% 100.000% 100.000%  

 

Table 2. Status of completion of estimates for G-Econ gridded database 

This table shows the status of the project for G-Econ 1.3 as of May 2006. 

 

 

IV. Are Output Differences In Output Explained By Geography? 
 

 There are many possible applications of these data to be explored, some of 

which are taken up in companion research papers. One of the central questions in 

economic geography is how much of the dispersion of output is explained by 

geographic variables. The G-Econ data provides an ideal laboratory to answer this 

question.  

 

 To explore this issue, I estimated a multivariate regression with the logarithm 

of output per km2 as the dependent variables with independent variables being 

temperature, precipitation, and other geographic variables. More precisely, the 

equation is:   

 

(1)           ij
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The notation is that i = the cell, j = the country or region, and k = the geographical 

variable. The variables are yij = output per km2  in 1995 international U.S. prices, 

Countj = country effects, and εij is the equation residual. Geographic variables, 

Geoij , are mean annual temperature, mean annual precipitation, mean elevation, 

“roughness” measured as standard deviation of elevation in grid cell, soil 

categories, and distance from coastline. The functions denoted as  represent 

polynomial functions of geographic variables. The Greek variables  are 

coefficients on regions while the 

)(.kg

0jβ

kβ  are regression coefficients on geographic 

variables. It should be noted that we omit all clearly endogenous variables (such as 

coastal density, proximity to markets, and health status). For this analysis, we omit 

the small countries, for which no regional data on pre capita output are available. 

 

 This test uses a dense set of exogenous variables to capture all interactions.14 

Table 3 shows the least-squares regression. We have shown only a subset of the 

variables, omitting the soils, interaction, and country variables. The equation 

explains 91 percent of the variance of output density for all 17,409 minimum-

quality observations. The geographic variables are all highly significant. 

 

                                                 
14 The precise specification in equation (1) contains 72 country effects plus nine 
polynomial terms in temperature and precipitation, six statistics on extremes and higher 
moments in temperature and precipitation, the first and second moments of elevation, 
three variables for distance from coast (< 50 km, < 100 km, and < 200 km), and 27 soil 
types. The equation has 17,305 degrees of freedom, although that is probably overstated 
because of spatial correlation. 
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 The equation has some interesting features. It indicates that the “optimal” 

temperature (which maximizes output density) is around 12 degrees C. Moreover, 

it suggests that some countries do particularly well or badly given their climates. 

Countries that are big negative outliers are Australia, Mozambique, Madagascar, 

and Angola. Those with positive country effects are Denmark, the Philippines, 

France, and Italy. The low density of output in Greenland, Canada, Russia, and 

Alaska are consistent with the economically inclement climates in those regions. 

 

We can illustrate the relationship between output density and temperature for 

the United States and tropical Africa in Figure 2. This figure shows the relationship 

between mean annual temperature and the logarithm (to the base 10) of output 

density. (We use the base-10 logarithm so that it is easy to understand differences 

in scale. Additionally, the solid line shows the kernel fit to these data.) This graph 

illustrates the low productivity of tropical Africa. 

 

 Another result is a similar relationship between temperature and output 

density for all large countries, shown in Figure 3. This graph shows two interesting 

results. First, there is a clear peak of the output density with temperatures in the 

temperate range, with the maximum output density at mean temperature in the 

range of 9 to 13 degrees C. The temperate regions are approximately 100 times 

more productive per unit area than the warmest regions (those with an average 

temperature over 27 degrees C).  

 

What will be a momentary surprise to most people is that the least productive 

parts of the globe are not the very hot or tropical regions but the very cold regions. 

Output density in the lowest range is at least 5 orders of magnitude lower 

(1/10,000) than that in the most productive regions. The reason this is only a 

momentary surprise is that the coldest regions are largely ice-covered and without 
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human habitation or major economic activity (aside from isolated oil fields). The 

true economic deserts of the globe are in Greenland, Antarctica, northern Canada, 

Alaska, and Siberia. 

 

V. Conclusion 

 

 This concludes the description of the G-Econ database for gridded output. 

More detail on individual countries will be available on the project web site at 

gecon.yale.edu. It must be emphasized that the current results are the first word and 

not the last. If this approach to measuring economic activity proves fruitful, then 

other researchers, particularly those in the countries involved, and especially 

national statistical agencies, will be able to provide much more detailed and 

accurate assessments of regional and gridded data, as well as time series. The 

history of innovative data systems usually involves small-scale efforts by private 

researchers to provide an example of how a particular data system might be 

constructed or used. After the initial experience, if in fact the data set appears 

valuable, more extensive and regular collection can be routinized and 

institutionalized within government statistical agencies. 15 The production of 

gridded global and national economic data by statistics agencies of governments is 

entirely feasible once the general principles are developed, and it could form part 

of the regular data collection and processing activities of governments. 

  

 

 15 For example, the U.S. national income and product accounts were first 
developed by a private researcher, Simon Kuznets, and were then lodged inside the 
government during the Great Depression when their value for understanding business 
cycles became clear. Similarly, after initial efforts to develop environmental accounts by 
private researchers, governments began to develop these accounts. 
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Dependent Variable: ln(output density)   

Included observations: 17409   

Weighting series: AREA   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     Mean Temp 0.511515 0.031529 16.22353 0.0000 

Mean temp2 -0.009161 0.000307 -29.87665 0.0000 

Mean temp3 -9.25E-05 1.03E-05 -8.936777 0.0000 

Mean precip 0.010669 0.001134 9.407875 0.0000 

Mean precip 2 -0.000237 1.12E-05 -21.14637 0.0000 

Mean precip 3 4.91E-07 1.94E-08 25.36917 0.0000 

Maximum temp -0.048580 0.040842 -1.189474 0.2343 

Minimum temp -0.225336 0.035560 -6.336753 0.0000 

Mean elevation 0.267036 0.037535 7.114287 0.0000 

Coast distance: med 0.545384 0.067147 8.122203 0.0000 

Coast distance: short 0.462837 0.075421 6.136724 0.0000 

Coast distance: long 0.941525 0.050107 18.79012 0.0000 

     

[other variables are 

omitted     

     
      Weighted Statistics   

     
     R-squared 0.908350     Mean dependent var 9.135930 

Adjusted R-squared 0.907730     S.D. dependent var 6.488201 

S.E. of regression 1.970851      Sum squared resid 67162.64 

Log likelihood -36454.51     F-statistic 326.0882 

Durbin-Watson stat 0.607693     Prob(F-statistic) 0.000000 

 

Table 3. Regression of ln of output density on geographic variables 
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Figure 2. Mean Temperature and ln Output Density for United States and 

Tropical Africa.  

Output measured as output per km2 for 1990, in 1995 U.S. dollars, purchasing 

power parity. Solid lines are kernel fits to data for regions. Temperature is monthly 

average Centigrade. 
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Figure 2. Kernel fit of average temperature and output density by grid cell 

 

Output measured as output per km2 for 1990, in 1995 U.S. dollars, purchasing 

power parity. Solid line is kernel fit. This shows results for all terrestrial grid cells 

for which data are available (N = 19,919). Zero output is set at output per unit area 

= 1. 
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Appendix. Example of Application 

of the Proportional Allocation Technique 

 

 This appendix shows the actual application of the technique to a single grid 

cell in India. The data apply to the year 1990. Table A-1 shows the actual data for 

the grid cell in which Delhi is located. Our convention is to label grid cells by the 

coordinates at the southwest corner, so a coordinate of (latitude, longitude) 

= (28, 77) indicates the grid cell centered at (28.5, 77.5). Southern and western 

hemispheres are indicated by negative values. Also note that we use World Bank 

national totals as controls for 1990, although that does not affect the algorithm 

described here. 

 

There are four sub-grid cells. The first step is to estimate the population of 

each sub-grid cell. This is done by taking the area of each sub-grid cell and 

multiplying it by the population density of the administrative unit. Summing over 

the sub-grid cells gives a calculated grid cell population, here totaling 10.8 million. 

However, the GPW estimate of grid cell population is 15.4 million, so the sub-grid 

cell estimates are rescaled by a population rescaling factor (specific to each grid 

cell), here equal to 1.42, to obtain the rescaled sub-grid cell population estimates 

that are consistent with the GPW grid cell total. 

 

 The next step is to estimate the output of each sub-grid cell. These take the 

rescaled population estimate for each sub-grid cell from column (9) and multiply 

these by the per capita output of each administrative unit in column (5). (Note that 

the per capita outputs of the administrative units are different.) The preliminary 

calculation of gross cell product in row (6) of column (10) is derived by summing 

the sub-grid cell estimates of output. This calculation provides an estimate of gross 

cell product for grid cell (28, 77) of 125.3 billion rupees. An estimate of the gross 
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domestic product of India summing over calculated cell outputs for all sub-grid 

cells (not shown) yields an estimate of total GDP that is lower than the control total 

from the national accounts, so the sub-grid cell estimates are rescaled upwards 

uniformly by the output rescaling factor of 1.3327. 

 

 The final estimate of the gross cell output is then 167.0 billion rupees, shown 

in row (6) of column (11). We then convert this number into U.S. dollars at market 

exchange rates by multiplying by an exchange rate of 19.3 rupees per dollar. These 

are also converted into a PPP level of output by multiplying the MER number by a 

conversion rate of 4.76 PPP units of output per MER unit of output. 

 

 The final results for grid cell (77, 28), in local currency, U.S. dollars at MER, 

and U.S. dollars at PPP, are shown in columns (11) through (13) of row (6). 



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1.
Longi-
tude

Lati-
tude RIG

State 
name

Output/ 
Capita 

(Rupees)

County 
density 

(population 
per sq km)

Number 
of 

subcells

Calculated 
subcell 

population

Rescaled 
subcell 

population

Calcul-
ated cell 
output  

(Rupees, 
millions)

Rescaled 
Cell 

Output   
(Rupees, 
millions)

Ce
Output   
(1990, 

1995 US 
$, 

millions), 
MER

Cell 
Output    
(1990, 

1995 US $, 
millions), 

PPP

Subcell totals
2. 77 28 0.093 Delhi 10,638 6,352 4 6,418,913 9,139,481 97,226 129,571 6,697 31,881
3. 77 28 0.028 Haryana 7,516 372 4 113,180 161,150 1,211 1,614 83 397
4. 77 28 0.234 Haryana 7,516 372 4 945,860 1,346,750 10,122 13,490 697 3,319
5. 77 28 0.644 Uttar Pr 3,557 473 4 3,309,902 4,712,758 16,763 22,340 1,155 5,497
6. Cell total 1.000 10,787,855 15,360,138 125,322 167,015 8,633 41,094

7. 3,983,436 5,308,650

8.

GPW 
estimated 
cell 
population 15,360,138

9.

Population 
cell 
rescaling 
factor 1.4238

Output 
rescaling 
factor 1.3327

Ratio: 
PPP/ME
R 4.760378

Column explanation:
(3) RIG = rate in grid = fraction of grid area in subgrid cell.
(5) Output per capita in political unit.
(6) Average population density in political unit.
(7) This is the total number of subcells in this grid cell.
(8) Calculated as gridcell area (10865.95 sq. km.) times (3) times (6).
(9) Equals (8) times rescaling factor of 1.4238
(10) Subcell population in (9) times subcell per capita output in (5).
(11) Rescaled per capita output by rescaling factor of 1.3327.
(12) Converted to US dollars by market exchange rate.
(13) Converted to US PPP dollars by ratio of PPP to MER output.

Row explanations:
(2) - (5) These are the four rows that comprise the grid cell (77, 28). 
(6) This is the total for the grid cell, which equals the sum of the four grid cells. Note that the RIG sum = 1, indicating
that the entire grid cell lies in terrestrial India.

(9) The rescaling factors are the ratios of the actual figures for the grid cell or the country divided by the tentative
calculation. These differ because the assumptions of uniform per capita output and population density do not
hold. For India, both rescaling factors are relatively large, indicating that the resolution is relatively crude.  

 

Table A-1. Illustration of Proportional Allocation Technique 
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