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 I. Background 
 
 It is often necessary to rescale variables between different boundaries, a 
technique we call �spatial rescaling.� An important example, which is 
investigated here, comes when we are given data with political boundaries 
and need to rescale them to geophysical boundaries, or sometimes in the 
other direction. For example, we may be given data on climate by latitude-
longitude grids and need to convert this to country or state levels. Another 
important issue is determining the location of population or economic 
activity, where we would like to estimate the population or output for grid 
cells. There are many approaches to doing spatial rescaling, and these are 
examined in the present study. 
 
 We can envisage the issue graphically using Figure 1.2 The figure shows 
five irregular regions (call them �states�). We have data for each of the states 
(population, income, output, and the like) and need to convert it to data for 
the grid cells. If we consider the central state, four grid cells lie entirely in the 
state, while parts of 12 others lie partially within the state. 
 
 In the field of quantitative geography, the techniques involved in spatial 
rescaling data are known as �cross-area aggregation�3 or as �areal 

                                                 

 1 The author is grateful for comments from Robert Mendelsohn, Nadja Makarova, and 
Alexandra Miltner. This research was supported by the National Science Foundation and EPRI. 
[version is scaling_paper_022802.wpd] 

 
2  Important note to readers of the cellulose versions of this paper: Many of the figures 

in this study are best read in the electronic color version. This is available on line at 
http://www.econ.yale.edu/~nordhaus/homepage/recent_stuff.html . 

 3 See A. Stewart Fotheringham, Chris Brunsdon, and Marton Charlton, Quantitative 
Geography, Sage, London, 2000, pp. 59-60. 
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interpolation.�4 Areal interpolation or cross-area aggregation arises in a 
number of different contexts, such as when data from census tracts are 
aggregated into legislative districts. 
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Figure 1. Example of Rescaling Problem 
This shows a typical example in which data need to be 
converted from states (here five irregularly shaped regions) 
to grid cells. Often the mapping is from points to regions as 
well. 
 
___________________________________________ 
 
 For purposes of this analysis, we call this problem �spatial rescaling� to 
indicate that it is generally not aggregation but inferring the distribution of 
the data in one set of spatial aggregates on the basis of the distribution in 
another set of spatial aggregates, where neither is a subset of the other. In 
environmental economics, spatial rescaling is common because environmental 
data often are scaled or aggregated on a geophysical basis (such as latitude 
and longitude) while socioeconomic data are generally available aggregated 
within political boundaries (countries, states, cities). Sometimes, the primary 
data are collected as individual observations and are aggregated into one or 
the other scales either to preserve confidentiality or because the original data 
are samples (this would be the case for virtually all economic data, such as 

                                                 

 4 See Robin Flowerdew and Mick Green, �Statistical Methods for Inference Between 
Incompatible Zonal Systems,� in Michael Goodchild and Sucharita Gopal, eds., The Accuracy of 
Spatial Databases, Taylor and Francis, London, 1989, 239-247. Also see P. F. Fisher and M. 
Langford, �Modelling the errors in areal interpolation between zonal systems by Monte Carlo 
simulation,� Environment and Planning A, vol. 27, 1995, pp. 211-224. 



 

 

-3- 

state unemployment rates, output, and price indexes). Often, the geographic 
scale is diffuse or heterogeneous and makes no sense unless it is aggregated, 
as in the case of country size, length of coastline, network size, corporate 
profits, or population density.  
 
 The practical application for the rescaling arises in the �G-Econ� project 
at Yale. The purpose of this project is to develop a global, geophysically 
scaled economic data set gridded at a 1-degree longitude by 1-degree latitude 
resolution. This is approximately 100 km by 100 km, which is somewhat 
smaller than the size of the major subnational political entities for most large 
countries (e.g., states in the United States, Länder in Germany, or oblasts in 
Russia). The scaling problem arises in this context because all economic data 
are collected and presented on the political scale. In general, we are using 
data at the subnational level (corresponding to states and counties for the 
United States) and converting these to gridded data. 
 
 The purpose of this paper is the practical one of determining the best 
technique for spatial rescaling along with the advantage of using 
disaggregated political-boundary data as the primary element for rescaling. 
We begin with discussing some statistical issues, next turn to a discussion of a 
simulation strategy, and then present the results of the simulations. 
 
 II. Statistical Issues in Spatial Rescaling 
 
 A. The setup  
 
 In general, country data are averaged over a two-dimensional space. To 
facilitate discussion and analysis, we treat our �countries� as one-dimensional 
strips rather than two-dimensional areas. Suppose that we have a continuous 
data set or a densely spaced data set in one dimension, {x(i)}. The data set is 
aggregated into N aggregates, which take the value y1 , ... , yN. These observed 
values are for the source regions or source data. The N aggregates might be 
countries, states, or counties, in which case the length of the aggregation (or 
the number of observations if the data are discrete) might be uneven. We wish 
to rescale the data into M aggregates, z1 , ... , zM , with different ranges of 
aggregation. These unobserved values are for the target regions or target data. If 
the z variables are geophysical, then the size of the aggregates might be equal, 
but this is inessential.  
  
 There are few examples of rescaling in the economics literature. One 
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example is the project to develop gridded data on population.5 In earlier 
papers by Robert Mendelsohn, DaiGee Shaw, and the present author, we used 
regression analysis to rescale data on climate from individual observations 
into county data.6  
 
 
 B. Spatial rescaling under simplified distributions 
 
 Before undertaking the simulations, it is worth considering whether the 
correct form of spatial rescaling can be determined on the basis of 
assumptions about the underlying process generating the individual 
observations. For this purpose, assume that the observations are generated by 
a process such as the following moving-average representation: 
 
(1) x(i) = a + f(L) e(i)  
 
where a is a constant, e(i) are independent errors with mean zero, and f(L) is a 
polynomial lag function of the form f(L) = b-k L-k +  � +  b0  + � +  bgLg in 
which Li is the ith lag of e(i), where minus signs represent lags, plus represents 
lags, and bi is the coefficient on the ith lag. 
 
 In certain limiting cases, the optimal form of aggregation is 
straightforward. The first case is where f(L) = 0, or where the observations are 
independent. In this case, the observation on the state is the best estimator for 
relevant grid cell, so the optimal spatial rescaling simply takes the area-
weighted average for each cell. This technique is known more generally as the 
�polygon overlay� method, in which variables are interpolated by area-
weighted averages. We also call this the �proportional representation� 
technique below. 
 
 Unfortunately, once we move beyond the independent case, extracting 
the distribution becomes more difficult. Consider the �simple� case where the 
data-generating process is a simple moving average process, for example 
where f(L) =  L-1 + 1 + L1. We can  solve this as 
 

                                                 

 5 See http://www.ciesin.org/datasets/gpw/globldem.doc.html . 

 6 See particularly Robert Mendelsohn, William Nordhaus, and Dai Gee Shaw, �The 
Impact of Global Warming on Agriculture: A Ricardian Approach,� American Economic Review, 
September 1994, vol. 84, No. 4, pp. 753-771. 
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(2) e (i) = L-1 (1 - L) (1 � L3)] u(i)  
 
This is difficult to solve analytically because it involves a large number of 
leads and lags. In practice, an analytical derivation of (2) is not a useful route 
to pursue for two reasons. First, the size of political boundaries is uneven, so 
it would be necessary to develop estimates that accounted for this fact. 
Second, an examination of the correlation pattern of the underlying income 
process for U.S. counties reveals that the distribution is of a very high order, 
that it is poorly determined, and that it varies among different variables (such 
as wage rates, per capita income, and population density). For example, if 
counties are sorted by proximity, the log of median income has a significant 
moving-average representation for up to 12 moving-average terms. The 
logarithm of county wages has 10 significant moving-average coefficients, 
and the logarithm of population density has 13 significant terms. Moreover, 
each of the distributions is quite distinct. Because of the complexity of the 
spatial correlation of economic relationships, we concluded that a simulation 
approach would be the most fruitful way of analyzing the relative merit of 
different spatial rescaling techniques.  
 
 III. Data for the simulation 
 
 A. Background 
 
 Given the difficulties of solving the rescaling problem analytically, we 
next turn to a simulation study of different techniques. We note at the outset 
that the simulations are designed for scaling economic data and will not 
necessarily pertain to all spatial data. However, by using a variety of 
distributions, some general principles do emerge. 
 
The underlying data examined here are county data for the United States. 
These data are the most disaggregated data for which a comprehensive set of 
national accounts can be constructed. The basic approach is to treat the county 
data as the �true� underlying data, to aggregate the county data up in 
different ways, and then to test different rescaling techniques by comparing 
the calculated aggregates with the �true� aggregates. This approach differs 
from standard Monte Carlo approaches only in that we use actual data rather 
than generated data as our underlying data.  
 
 B. Construction of the Data Set 
 
 The data for this experiment are data for 3105 counties of the United 
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States. This data set was gathered by the author for a study of climate 
amenities.7 It contains a number of economic, demographic, and geophysical 
measures for each of the counties of the United States.  
 
 The major difficulty is to construct a simulated county distribution where 
the counties are �close� to each other. In principle, we would like to line the 
counties up so that the path through the counties minimizes the cumulative 
distance of the path. To get the minimal path would require solving what is 
today an infeasible traveling salesman problem, so we settled for �pretty-
good� paths. The preferred data set was one where the counties were chosen 
so that the distance between adjacent counties was relatively small. As we 
show below, experiments with different paths found relatively little change in 
the results. 
 
 We assume that the underlying county data are accurate but will 
generally be unobserved by the analyst. We further assume that the counties 
are of equal size (so that they correspond to the individual elements in the x(i) 
series discussed above). We then aggregate the county data into both gridded 
data and state data by simple averages. We take the (�observed�) state data 
and rescale them to the gridded data using different techniques. We then 
compare the constructed (�unobserved�) gridded data with the �true� 
gridded data. On the basis of these comparisons, we can then rank different 
methods. The advantage of this approach is that economic data tend to be 
skewed and have significant but variable spatial correlation, so we can best 
evaluate the accuracy of different approaches using actual data rather than by 
assuming tractable but unrealistic statistical distributions. 
 
 C. The variables 
 
 For the experiments, we begin with five different sets of variables that are 
available at the county level and can be aggregated into the state level: 
 
 1. Average hourly earnings index 
 2. Median family income 
 3. Population density 
 4. Median family income (alternative locational sort) 
 5. Population density (alternative locational sort) 

                                                 

 7 William Nordhaus, �Climate Amenities and Global Warming,� in Climate Change: 
Integrating Science, Economics, and Policy, N. Nakicenovic, W. Nordhaus, R. Richels, and F. Toth, 
eds., IIASA, CP-96-1, 1996., pp. 3-45.  
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 In addition, we compare the results with other geographic or randomly 
generated variables: 
 
 6. Temperature 
 7. Latitude 
 8. Precipitation 
 9. A normal random variable (rand) 
 10. A 5-period two-sided moving average process generated from a 
normal random variable (randma) 
 11. A highly skewed random variable (pareto) 
 12. A 5-period two-sided moving average process generated from the 
highly skewed random variable (paretoma) 
 
 Most of the experiments were conducted with the logarithm of median 
family income because this was most closely related to the measure of county 
output. We tested the major results for the other variables as well. For the 
simulations, we chose different combinations of grid sizes and state sizes. For 
example, we might examine grid size of 47 and state size of 41. With this 
choice, the state boundaries occur at (41, 82, 123, �) and the grid boundaries 
at (47, 94, �). In general, the sizes were taken to be prime numbers so that no 
spurious correlations arose from the internal harmonics of the choice of sizes. 
In other words, the choice was made to reflect the fact (illustrated in Figure 1) 
that internal political boundaries seldom coincide with the boundaries of grid 
cells; by choosing prime numbers for the multiplies, we ensure that the 
boundaries generally only coincide at country boundaries. 
 
 D. Rescaling algorithms 
 
 The final issue is to devise rescaling algorithms. All techniques share the 
function that they map the �observed� data aggregated by states into 
estimates of the data aggregated by grid cells and then compare the 
�constructed� cell data with the �true� cell data. The literature on spatial 
rescaling contains two general kinds of techniques. The first, which is the 
most widely used, is the polygon overlay method mentioned above. We call 
this the �weighted average� below. The other general type of technique is 
curve fitting, such as regression. We separate regressions into �local� 
techniques, which rely only on local attributes, and �global� techniques, 
which rely upon the entire sample. (By �global� we mean those techniques 
that use the entire sample; by �local� techniques we mean those which only 
examine data in the neighborhood of the source and target regions.) 
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 The techniques examined here are the following: 
 
 1. Weighted average or proportional representation (polygon overlap). This 
technique apportions the target grid cell among the different states and then 
sets the value for the grid cell as the weighted average of the values of the 
different states, where the weights are proportional to the area of each state in 
the grid cell. This approach is data-intensive and computationally 
burdensome because it requires estimating the fraction of each grid cell 
belonging to each state. For example, look back to the state in the center of 
Figure 1. To calculate the weighted-average approach, it would be necessary 
to apportion the central state among the 16 grid cells into which it falls.  
  
 2. Median or �plurality rule.� This technique takes as the value of the grid 
or target region the value for that state or source region which has the largest 
area in the grid. That is, the grid cell takes on the value of the state, which has 
the �plurality� of area in the grid. (For example, in Figure 1, the value for the 
grid cell marked by A is determined by the value for the state in which A lies 
since that is the largest subregion of that grid cell.) This approach has the 
same data requirements as weighted regression and is therefore relatively 
simple. In practice, it can be accomplished without any statistical analysis as 
an analyst can simply examine a map to determine the �plurality� state for 
each grid cell. This approach was apparently taken in the original version of 
the gridded world population database. In preliminary work done at Yale to 
prepare the G-Econ economic data for grid cells, we relied upon the median 
approach, but after investigating different approaches to spatial rescaling, we 
switched to the weighted-average approach. 
  
 3. Local kernel regression (six alternatives). This technique uses a local kernel 
regression for each state. The technique fits a kernel regression, which covers 
the state plus n counties (or source regions) beyond the boundary of the state. 
The purpose of extending the regression beyond the boundary is to allow for 
the possibility of moving-average effects. The tests used 2, 4, 6, 8, 10, and 12 
counties beyond the state boundary, and experiments showed that extending 
the boundary further generally produced a deterioration in the fit. This 
technique is in principle relatively simple to employ; the major disadvantage 
of this approach in practice is that it requires using kernel regression 
techniques, which are somewhat temperamental and not always compatible 
across different statistical packages. The procedure can easily be automated 
within a statistical package that has programming capabilities and 
nonparametric regression features. Since these features are rapidly being 
included in statistical software packages, this approach is likely to become 
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increasingly feasible in the future.8 
 
 6. Global kernel regression (three alternatives). This technique uses a global 
kernel regression for each state. This uses the same approach as 5 but uses the 
entire sample rather than a local sample. The major issue here is the 
bandwidth. Intuition suggests a very bandwidth, and we experimented with 
bandwidths of 2, 10, and 100 observations. Not surprisingly, the global kernel 
regression performed worse than local techniques for virtually all tests. 
 
 7. Weighted regression. In an earlier stage of this analysis, we analyzed 
global weighted regressions. This technique, which is closely related to the 
kernel regression, uses regressions in which the state observations are 
weighted inversely to the distance of the center of the state from the center of 
the grid cell. These regressions are constructed by using weights which are 
wt(i) = d(i)-γ, where wt(i) is the weight on a given observation, d(i) is the 
distance of the observation from the midpoint of the observation to be 
predicted, and γ ≥ 0 is an exponent on the distance. Note that where γ = 0, the 
model reduces to the crudest estimate, which is simply the country average. A 
fair amount of experimentation in the early stages went into looking at 
alternative weights for the weighted regressions. For most variables, the root 
mean squared error was minimized with a distance parameter of γ = 1. 
Weighted regression has the advantage of being relatively simple; it requires 
primarily geophysical data for both grids (which is trivial) and states (which 
is not always readily and accurately available). This approach was used in the 
Mendelsohn, Nordhaus, and Shaw studies cited above. We decided not to 
analyze this technique for this round of experiments to reduce the number of 
experiments, because it had proven unfruitful in earlier rounds, and because 
it is logically a subset of kernel regressions. We will show some of the earlier 
results in a later section. 
 
 8. Country average. This approach uses the mean of the entire sample and 
applies it to each grid cell. In other words, the mean of the variable for the 
entire �country� is applied to each grid cell. This approach has the advantage 
of being extremely simple, as it requires no subnational data. 

                                                 

 8 The kernel regressions were performed in EViews 4.0. Analysts should be warned that 
it is necessary to tune the parameters very carefully. For these results, we used local linear 
regression, with �exact� fitting, with the number of grid points equal to the total sample size, 
and with a bandwidth equal to 2 to 12 observations, using an Epanechnikov kernel. This is a 
much finer (and slower) setting than is usually set as a default. Using the default settings will 
produce very smooth results and poor fits and defeat the purpose of the kernel regressions. 
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 9. Pycnophylactic smoothing. This approach, devised by Waldo Tobler, is 
widely used to create maps from areal data. It imposes Laplacian smoothness 
on the surface by minimizing the curvature; that is, it requires that the sum of 
the squared second differences of the variable in both directions be 
minimized.9 We have up to now been unable to implement the full 
pycnophylactic technique in our statistical study. Instead, we undertook a 
pilot test using a pycnophylactic variation of the most accurate technique 
(weighted average). This experiment was performed by taking the simulation 
for the weighted-average technique and applying pycnophylactic smoothing. 
The smoothing was achieved by minimizing the squared second difference 
between states with a Newton method with quadratic central search using the 
�Solver� program. 
  
 IV. Results 
 
 Box 1 provides a summary of the major results, and we now proceed 
with a discussion of each of the points. It should be emphasized that all these 
results are conditional on the experiments and data actually examined. 
 
 

                                                 
9 W.A. Tobler, �Smooth Pycnophylactic Interpolation for Geographical Regions,� Journal of the 
American Statistical Association, 1979, pp. 519-529.     
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     1. The weighted average technique (polygon overlap) is the most robust 
technique and generally gives the most accurate estimate of the true state values. 
     2. Local techniques are generally more accurate and more robust than global 
techniques. 
     3. There is generally little difference among local techniques (except for the 
�median� estimates and pycnophylactic interpolation), and the choice should be 
made on the basis of ease of implementation.  
     4. Global techniques can be extremely inaccurate because they do not respect 
local variation in economic typography. 
     5. Very large improvements in accuracy can be obtained by disaggregating the 
source data; that is, by reducing the size of the source regions, the accuracy of the 
spatial rescaling for the target regions is increased significantly.  
     6. Large increases in accuracy are also gained by considering larger target 
regions.  
     7. Pycnophylactic smoothing was a disappointment. It tended to smooth the 
results far too much.   
     8. The rankings of the different algorithms are similar across a wide range of 
economic and statistical series. 
 
  Box 1. Summary of Results of Simulations 
 

 
For reference purposes, the 11 techniques that were scored are shown in Box 
2. 
 
 
avg = weighted average 
med = median of counties 
ker2 = Local kernel estimate overlapping 2 counties into adjacent states 
ker4 = Local kernel estimate overlapping 2 counties into adjacent states 
ker6= Local kernel estimate overlapping 2 counties into adjacent states 
ker8= Local kernel estimate overlapping 2 counties into adjacent states 
ker10= Local kernel estimate overlapping 2 counties into adjacent states 
ker12= Local kernel estimate overlapping 2 counties into adjacent states 
kertot2 = Global regression with a window size of 2 counties 
kertot10 = Global regression with a window size of 10 counties 
kertot100 = Global regression with a window size of 100 counties 
 
Box 2. Algorithms Examined in This Study 
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1. The weighted average technique (polygon overlap) is the most robust 
technique and generally gives the most accurate estimate of the true state 
values. 
 
 One surprise is that �simple is best.� Of all the approaches from trivial 
through fancy to esoteric, the simplest and most intuitive is to take a weighted 
average of the variable where the weights are the areas of the source region 
(state). This produced not only the lowest error but also the most reliable 
algorithm across a variety of distributions. 
 
Figure 2 shows a summary of the results of different techniques. The bars 
show the average root mean squared error (RMSE) of different rescaling 
algorithms. The results apply to two different economic variables (the log of 
median income and the log of wages) for seven different combinations of grid 
and state sizes. The size of the bars measures the average RMSE for that 
algorithm relative to the minimal RMSE across all algorithms. The results are 
clear: the average technique has the lowest average error. Moreover, it is 
robust in that it has at most a 2 percent penalty relative to the most efficient 
algorithm. 
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Figure 2. Relative error for different rescaling algorithms. This graph shows 
the root mean squared error for 11 different algorithms defined in Box 2 and 
the text. These show the average RMSE for each algorithm relative to the 
minimum RMSE of all algorithms, averaged across seven different grid 
combinations and two different variables. 

___________________________________________________________ 
 
 Figure 3 shows the range of errors (i.e., the ratio of maximum to 
minimum RMSE) across the different algorithms for the 14 different 
experiments, where these are ranked from left to right by the range for �local� 
algorithms. The first bar shows the range for the local algorithms, the second 
bar shows the range for all algorithms, and the (virtually invisible) third bar 
shows the ratio of the RMSE for the average technique to the RMSE of the 
most efficient technique. The chart makes it clear that there can be a 
substantial penalty from choice of an inefficient algorithm. In the worst case, 
an inefficient algorithm can increase the RMSE by a factor of almost six.  
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 A further point can be seen by examining the labels at the bottom of 
Figure 3. These show (size of grid, size of state). For example, the first set of 
bars represents a simulation where each grid contains 13 counties while each 
state contains 79 counties. The range is generally greatest when grid size is 
large relative to state size. 
 

Relative error different techniques

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(13
,79

)

(47
,49

)

(13
,17

)

(47
,41

)

(89
,79

)

(47
,17

)

(98
,17

)

(47
,17

)

(13
,79

)

(13
,17

)

(47
,49

)

(47
,41

)

(89
,79

)

(98
,17

)

R
an

ge
 fo

r 
di

ff
er

en
t t

ec
hn

iq
ue

s

Range local

Range all techniques

Ratio average

 
Figure 3. Range of errors for different algorithms. The figure shows the 
range of RMSE for the different algorithms for the grid and state size shown 
at the bottom. The numbers at the bottom of the figure are (size of grid, size of 
state), where the �size� is measured as the number of counties comprising the 
grid or state. 

____________________________________________________________ 
 
 2. Local techniques are generally more accurate and more robust than 
global techniques 
 
 One of the key results of the simulations is that �local� techniques 
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generally dominate �global� techniques. We designate algorithms as local 
when they examine only the local information and discard information that is 
far from the local topography. This result is somewhat paradoxical because it 
is usually presumed that more information is better than less. 
 
 The results for different algorithms were shown in Figure 2. The first 8 
bars are local algorithms. With the exception of the median, they all perform 
better than the global algorithms shown in the last 3 bars. Other global 
algorithms, such as ones that smooth over the entire country, generally do 
even worse, as we discuss below. 
  
 3. There is generally little difference among local techniques (except for 
the �median� estimates and pycnophylactic interpolation), and the choice 
should be made on the basis of ease of implementation 
 
 Looking more closely at the local algorithms, we see that there is little 
difference in their performance across different simulations, the exceptions 
being the median and the pycnophylactic algorithms (the latter is discussed 
below). The median and pycnophylactic algorithms aside, the local algorithms 
have a range of RMSE between best and worst of less than 10 percent. While 
there is not much to choose among them in terms of performance, as we 
discuss below the ease of implementation may be quite different using 
existing software packages. Therefore, we conclude that (aside from the 
median and pycnophylactic) the choice among local estimators should be 
made largely on the ease of the implementation. 
 
 4. Global techniques can be extremely inaccurate because they do not 
respect local variation in economic topography 
 
 Global techniques often perform very poorly. For these experiments, the 
global techniques were limited to different kernel regression models. In an 
earlier set of experiments, we tested a variety of weighted regression 
approaches and found that these were generally very inaccurate relative to 
local techniques. Figure 4 shows a comparison of three global weighted 
regressions with three local techniques. The global regressions have much 
higher average error. 
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Figure 4. Error of Different Global Algorithms. 
This simulation compares the RMSE for two local regressions 
(the first two bars) with three global-regression algorithms for 
the log of average hourly earnings. The global regressions 
weight the observations by the inverse distance to the power 
shown divided by 10. Hence, RMSELAVI4_GR_F_1 represents 
a weighted regression of the log of median income where 
observations are weighted by the distance from the prediction 
to the power 0.1 (see the discussion above). 
_______________________________________________ 
 
 
 5. Large improvements in accuracy can be obtained by disaggregating 
the source data 
 
 Two important decisions that are under the control of researchers involve 
the size of the source region (here the �states�) and the size of the target 
region (here the �cells�). How far down should the source economic data be 
disaggregated? Into how fine a grid should the gridded or target region be 
subdivided? 
 
 Often the answers to these questions will be dictated by the availability 
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of the data. For example, in our G-econ project at Yale, we began with the 
difficulty that most countries prepare output data only at the national level. 
For large countries like the United States, Russia, or Brazil, such large 
geographical aggregates for the source data set might lead to very large errors 
in grid cell data. Similarly, in choosing a size of target grid cell, we were torn 
between the desire for higher resolution and the recognition that the errors 
would be larger at smaller resolutions. 
 
 Our simulations cast some light into the tradeoffs here. Starting with the 
first question, Figure 5 shows the gains from disaggregating the source 
regions with different target grid cells. The elasticity of the RMSE with respect 
to state size is 0.52 (+.10), so a decrease in source size by 10 percent would 
lower the error rate by 5 percent. There are therefore clear gains from 
disaggregating the source data where the errors from disaggregation are 
relatively small. 
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Figure 5. Impact of state size on accuracy. This figure shows the relation 
between log10  of state (source-region) size and log10 of RMSE for three 
different grid cell (target region) sizes. For example, in changing the source 
region from U.S. states to U.S. counties, the size of the source declines by a 
factor of sixty (or a log10 change of 1.8). This produces a substantial gain in 
accuracy. 

____________________________________________ 
 
  
 6. Large increases in accuracy are gained by considering larger target 
regions.  
 
 The second tradeoff is shown in Figure 6, which shows the impact of grid 
cell size on RMSE.  The estimated elasticity of error with respect to grid cell 
size is -0.72 (+.059). These results indicate that disaggregating can raise the 
error rate markedly. For example, many current estimates use a 1-minute by 
1-minute resolution of population. Using these results suggests that the error 
from moving to such a fine resolution would be approximately 130 percent 
higher than using a 1-degree by 1-degree grid aggregation. 
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Figure 6. Impact of grid cell size on error.  
This figure shows the same relationship as Figure 5, where the grid (target-
region) size is changed and the state sizes are held constant for the different 
series.  
_______________________________________ 
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 7. Pycnophylactic smoothing produces very poor results because it 
smoothes the results far too much   
 
 Pycnophylactic smoothing is widely used and often praised. The 
criterion for selecting the target data (here, the grid cells) is that it minimizes 
the sum squared second-difference in the variable from one cell to the next. 
Figure 7 shows the results of pycnophylactic smoothing for the case of log 
median income for the first 470 observations. The heavy block line is the 
observed state data, the light block lines are true state and average estimates, 
and the smooth curve is the pycnophylactic estimator. It smoothes nicely but 
tends to miss fine gradations in the underlying data. A good example is the 
grid cell between lying approximately between 190 and 235. The average 
technique gets the exactly correct answer, while the pycnophylactic technique 
is shooting up to smooth the data. The average error was 76 percent larger for 
the pycnophylactic smoother as compared with the average technique. Given 
the dismal performance, we choose not to pursue this approach further. 
Pycnophylactic interpolation produces pretty pictures but the jagged 
estimates produced by the local algorithms yield more accurate estimates of 
the underlying distributions. 
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Figure 7. Comparison of Average and Pycnophylactic-Smoothing Algorithms 
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            8. The rankings of the different algorithms are similar across a 
wide range of economic and statistical series 
 
 The results for distributions of several other variables were tested. For 
this purpose, we display only one set of simulations, that with the number of 
counties per grid equal to 47 and the number of counties per state equal to 49. 
This choice was taken to represent a case where the sizes of grid cells and 
counties are approximately the same, which holds for the U.S., and to 
minimize the sampling error. 
 
 The results are shown in the Appendix, with the key to the different 
series given at the end of the Appendix. Each bar shows the ratio of the RMSE 
for the algorithm listed in the key. The results are clear: local techniques are 
always better than global algorithms; the local kernel-regression algorithms 
are virtually identical to the AVG algorithm. We have not shown the MED 
algorithm, but it was uniformly worse than the AVG, and often worse than 
the global algorithms. 
 
 
  V. Implementation Issues 
 
 The ranking of the different techniques is clear. The next question 
concerns the ease of implementing each of the techniques. We can group the 
difficulty into three categories: very easy, moderately difficult, and most 
difficult. 
 
 Very easy 
 
 Country-average (unweighted) regression techniques are very easy to 
implement. This technique requires only country data and no data on 
individual states (source region). This is the approach that has been taken in 
rescaling in most existing studies using economic data. The RMSE for country 
averages is, however, very large. For example, if there are 50 states and 3000 
counties (which is the case for the U.S.), then, for median income, using 
national data has a RMSE of 0.24, using state data has an RMSE of 0.13, and 
using county data has an RMSE of 0.08. Using country data is generally not 
recommended unless subnational data are simply unavailable or there is a 
low premium on accuracy.  
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 Moderately difficult 
 
 Weighted regression, kernel regression, and �plurality rule� are in the 
�moderately difficult� category. These techniques require economic (source) 
data for each of the states, but do not require mapping the targets or sources 
(grids or states) in detail. We see, however, that these techniques have 
significantly higher error that the best techniques. Looking at Figures 2 and 3, 
we see that the error of the median techniques and efficient weighted 
regressions have errors between 80 and 300 percent larger than the most 
accurate algorithms. 
 
 Most difficult 
 
 The most difficult techniques are ones that require both regional data and 
mapping out each state and grid cell in detail. Take Figure 1 above as an 
example.  These techniques require obtaining detailed data for the variable of 
interest for each state and also determining exactly how much of each state 
lies in each grid cell. The first of these is often very time intensive; for 
example, in the G-Econ project, it requires developing regional output 
accounts for many countries. For the second, detailed mapping is in principle 
straightforward with computerized mapping programs, but it appears that no 
programs currently exist that can perform this task for all countries. There are, 
however, major gains from moving to the most difficult algorithms. 
 
 Figure 8 shows a comparison of very easy (country average) algorithms, 
more difficult (global regression) algorithms, and most difficult (efficient 
local) algorithms. For this example, country approach has a RMSE about 120 
percent higher than the efficient technique; global techniques have RMSE 
from 10 to 50 percent higher than the most efficient technique; and the four 
local algorithms are essentially equivalent. Clearly, there are substantial gains 
in accuracy from a careful scaling at the subnational level. 
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Figure 8. RMSE for different algorithms and for country average 

This figure compares the relative error of efficient local algorithms on the left with 
the error from using a country average, shown on the last bar on the right. This 
example, which is for the United States, probably understates the differences in 
many countries with larger regional inequality. 
_____________________________________________________________ 
 
 It is useful to put these results in international perspective. The data used 
here are for the United States. Regional differences in incomes in the United 
States are small relative to many other large countries. Therefore the gains 
from using subnational data are likely to be even larger in other countries. 
 
 V. Summary 
 
 Spatial rescaling is an area of growing importance in empirical studies of 
countries and regions with the advent of spatially based data, such as that 
produced by satellites. At the same time, researchers who cross the 
disciplinary boundaries between physical and natural sciences increasingly 
need to rescale variables produced with one scaling system into another 
scaling system. The present study investigates the properties of alternative 
rescaling algorithms using both artificial data and county data for the United 
States. It finds that the error from not using appropriate techniques is 
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substantial. Moreover, it finds that the errors in different rescaling techniques 
will differ depending upon both the techniques used and the extent of 
regional structure in the variable under investigation. 
 
Techniques using country averages (which are �very easy� to implement) are 
likely to perform poorly, especially where there is systematic variation. 
Techniques that are �moderately difficult,� needing only average data for the 
individual states, improve the results by a large factor, especially where there 
is systematic variation in the data that can be exploited. Techniques that are 
�most difficult� to apply require detailed geophysical data for each state; they 
improve the performance markedly for the different variables that we 
investigated. 
 
 What are the final recommendations that emerge from this study? If 
researchers have either lots of research time or the ability to write specialized 
programs that can capture the detailed contours of the political boundaries 
and gridded regions, then the �most difficult techniques� are definitely 
recommended. In particular, the �weighted-average� technique (a.k.a. 
polynomial interpolation in the spatial statistics literature) stands out as the 
most robust and most accurate. Local kernel regressions with very small 
bandwidths perform almost as well.  The choice between these two 
techniques will depend upon which is easier to implement. 
 
 The other finding is that using national averages of data is likely to 
provide substantial errors for most data series when they are rescaled to 
relatively fine grid cells. Put differently, there are major gains to 
disaggregating the source data below the national levels and to the lowest 
level at which reasonable accuracy in the regional data can be obtained.  
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Appendix. Results for Different Variables 
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Alternative distribution of population density 
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Alternative distribution of median income 
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Alternative distribution of wage rate 
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Wage rate 
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Pareto moving average 
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Random normal variable, moving average 
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Pareto variable 
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Random normal variable 
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Key to variables in appendix: 
 
Variables have the following structure: 
 
�RMSE[variable name]_GD_[algorithm name]� 
 
The algorithm name is given in Box 2. �GD� means that it is scaled to the grid 
cell. The key to variable names is below: 
 
1. Average hourly earnings index (lavi4) 
2. Median family income (lmedinc) 
3. Population density (lpd) 
4. Median family income (alternative locational sort) (slm) 
5. Population density (alternative locational sort) (sl4) 
6. Temperature (temp) 
7. Longitude (long) 
8. Precipitation (prec) 
9. A normal random variable (rand) 
10. A 5-period two-sided moving average process generated from a normal 
random variable (randma) 
11. A highly skewed random variable (pareto) 
12. A 5-period two-sided moving average process generated from the highly 
skewed random variable (paretoma) 


